回到扔硬币的例子 。这里显然我们有:\(G_{1} = \left\{ HH, HT \right\}, ~ G_{2} = \left\{ TT, TH \right\}\),且 \(G_{1} \cup G_{2} = \Omega\) 。那么 。我们现在只需要依次:假设 \(w \in G_{n}\) 并求 \(\frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{n}} \right]}{P(G_{n})}\),最后将所有所求结果相加即可 。
\[\]
- 假设 \(w \in G_{1} = \left\{ HH, HT \right\}\),
\[ \begin{align*} \mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) &= \frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{1}}, ~ w \in G_{1} \right]}{P(G_{1})}\\ &= \frac{\sum\limits_{w \in G_{1}}\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{1}} ~ | ~ w \in G_{1} \right] \cdot P\big(\left\{ w \right\}\big)}{P(G_{1})}\\ &= \frac{\sum\limits_{w \in G_{1}} X(w) \cdot P\big(\left\{ w \right\}\big)}{P(G_{1})}\\ & = \frac{X(HH) \cdot P\big( \left\{ HH \right\} \big) + X(HT) \cdot P\big( \left\{ HT \right\} \big)}{P\big( \left\{ HH, HT \right\} \big)}\\ & = \frac{\frac{1}{4} \cdot a + \frac{1}{4} \cdot b}{\frac{1}{2}}\\ & = \frac{a + b}{2} \end{align*}\]
- 假设 \(w \in G_{2} = \left\{ TT, TH \right\}\),
\[ \begin{align*} \mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) &= \frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{2}}, ~ w \in G_{2} \right]}{P(G_{2})}\\ &=\frac{\sum\limits_{w \in G_{2}}\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{2}} ~ | ~ w \in G_{2} \right] \cdot P\big(\left\{ w \right\}\big)}{P(G_{2})}\\ &= \frac{\sum\limits_{w \in G_{2}} X(w) \cdot P\big(\left\{ w \right\}\big)}{P(G_{2})}\\ & = \frac{X(TT) \cdot P\big( \left\{ TT \right\} \big) + X(TH) \cdot P\big( \left\{ TH \right\} \big)}{P\big( \left\{ TT, TH \right\} \big)}\\ & = \frac{\frac{1}{4} \cdot c + \frac{1}{4} \cdot d}{\frac{1}{2}}\\ & = \frac{c + d}{2} \end{align*}\]综上所述:
\[\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) = \begin{cases}\frac{a + b}{2} \qquad \mbox{if } ~ w \in \left\{ HH, HT \right\}\\\frac{c + d}{2} \qquad \mbox{if } ~ w \in \left\{ TT, TH \right\}\\\end{cases}\]
推荐阅读
-
-
-
-
-
-
空格键失灵怎么办?电脑键盘空格键失灵了怎么处理?解决您的问题
-
-
-
身怀六甲的六甲是什么意思 身怀六甲的六甲是什么意思
-
-
-
-
-
2022年广东养老金发放时间什么时候到账 2022年广东养老金补发规范
-
-
原神手游月卡值得冲吗-月卡性价比分析2020攻略资讯
-
-
-
关于深入实践DDD:以DSL驱动复杂软件开发简述 深入实践DDD:以DSL驱动复杂软件开发
-